Signals \& Systems
Student ID Number:

Unified Engineering
Fall 2007
Quiz 5
Tuesday December 18
S\&S Total: 70/120 points
Question 1: 35/70 points
Question 2: $35 / 70$ points

Question 1 (35 points)

An LTI system is described by the following state-space matrices:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right] \\
B & =\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
C & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
D & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Note that the system has two outputs, $y_{1}(t)=x_{1}(t)$ and $y_{2}(t)=x_{2}(t)$. The state transition matrix for the system is

$$
\Phi(t)=\left[\begin{array}{cc}
\cos 2 t & \frac{1}{2} \sin 2 t \\
-2 \sin 2 t & \cos 2 t
\end{array}\right] .
$$

S1(a) [15 pt] Compute the output response of the system to a unit step input, $u(t)=1$, $t>0$. The initial state of the system is $\vec{x}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$.

S1(b) [10 pt] Sketch your response from S1(a) on two separate plots: $y_{1}(t)$ versus t and $y_{2}(t)$ versus t. On each plot indicate clearly the values of the magnitude of oscillations and the period of oscillations.
$\mathrm{S} 1(\mathrm{c})$ [10 pt] Create a trajectory plot of the system response by plotting y_{2} versus y_{1}. Indicate clearly on the plot the values of the important characteristics of the trajectory, such as the central point and the minimum/maximum values.

Signals \& Systems Question S1
Student ID Number:

Signals \& Systems Question S1
Student ID Number:

Student ID Number:

Question 2 (35 points)

An aircraft has roll angle $\phi(t)$ and roll rate $\dot{\phi}(t)$. The roll dynamics satisfy the following second-order differential equation

$$
\begin{equation*}
\ddot{\phi}=-c \dot{\phi}+u, \tag{1}
\end{equation*}
$$

where

$$
c=\text { aerodynamic damping coefficient, }
$$

$u=$ input command to the aircraft aileron system.
The heading angle of the aircraft velocity vector, $\Psi(t)$, satisfies the following differential equation

$$
\begin{equation*}
\dot{\Psi}=\frac{a_{l}}{V} \tag{2}
\end{equation*}
$$

where the aircraft velocity, V, is assumed to be constant. a_{l} is the lateral acceleration in the horizontal plane, which is produced by the roll angle according to the equation

$$
\begin{equation*}
a_{l}=a_{L} \sin \phi, \tag{3}
\end{equation*}
$$

where a_{L} is the acceleration due to lift.

Use the following parameter values:

$$
\begin{aligned}
c & =1 \mathrm{rad} / \mathrm{s} \\
a_{L} & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\
V & =98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

S2(a) [15 pt] Create a linear state-space model with the aileron command, $u(t)$, as input, and the heading angle, $\Psi(t)$, as the output. You can assume that the roll angle is always small.

S2(b) [20 pt] Design a full-state feedback controller that places the eigenvalues of the controlled system at $s=-1$ and $s=-1 \pm j$.

Signals \& Systems Question S2
Student ID Number:

Signals \& Systems Question S2
Student ID Number:

